International Journal of Research in Advent Technology, Vol.2, No.10, October 2014
E-1SSN: 2321-9637

Survey on the Concurrency Control Protocols for
Encrypted Cloud Databases

Dr. M. Newlin Rajkumat;, Brighty Batley &, Dr.V.VenkatesakumarAncy Georgé
Assistant Professor’, PG Scholar?, Assistant Professor®, PG Scholar®
Department of Computer science and engineering™ % %4
Anna University Regional Centre Coimbatore
Email: newlin_rajkumar @yahoo.co.in, brighty008@gmail .con?”

Abstract- Cloud database environments are very attractivéhiodeployment of large scale applications due to
their highly scalable and available infrastructufée main reason for the users deploying diffetgpes of
applications in the cloud is its pay-for-use costdel. This survey contains the most prominent comecgy
control protocols that can be used in the encryptedd database. The degree of data consistencycastd
requirements varies according to the concurrenagrabprotocols.

Index Terms- Cloud; database; data consistency; concurrencyaont

1. INTRODUCTION

Cloud based services are becoming popular as thé)¢ second concurrency control protocol is the
focus on high availability and scalability at lowst. Shapshot isolation (SI) which provides increased
While providing high availability and scalability, COncurrency in clogd environment when compared to
placing critical data to cloud poses many securitySR [4]. Transactions are read from the snapshot,
issues. For avoiding these security issues the atata reads are never blocked because of write lockstwhic
stored in the cloud database in an encrypted formdf turn increases concurrency. Sl does not allowyma
The encrypted cloud database allows the execufion 8 the. Inconsistencies, bU_t 5‘_”0W5 _write _skew
SQL operations by selecting the encryption schem@@omal'?s- SI aIIo_ws transaction inversions. T0|_dav0
that support SQL operators. Encrypted cloud databafansaction inversions strong consistency guarastee
permits different types of accesses such as diseily €guired, i.e. strong SI (SSI).

concurrent, and independent. One of the architectur _ _ _
that supports these three kinds of access The third concurrency control protocol is the sessi
SecureDBaaS, which was proposed by Luca Ferrefipnsistency (SC) [5]. Session consistency is a
et al [1]. The SecureDBaaS architecture Suppor{gﬁerent variety of eventual consistency. The syst
multiple and independent clients to execut®rovides read your writes consistency inside each
concurrent SQL operations on encrypted data. Daﬁgsspn.-Sessmn congstency is at a -Iow cost while
consistency should be maintained by Ieveragin@ons'de”ng response time and transaction cost.

concurrency control mechanisms used in DBMS _ _
engines. The cost based concurrency control in the clouties

C® i.e. cost-based adaptive concurrency control in

This survey explains the various concurrency contrgloud [6]- C dynamically switch between strong
protocols that can be used in the encrypted clokPnsistency level and weak consistency level of
database. The applications need 1SR if data teansactions in a cloud database according to dse ¢
replicated. Hence, to guarantee the merits of ¢litud &t runtime. Itis built on the top of 1SR and SSi.
is essential to provide high scalability, availipijl
low cost and data with strong consistency, which is
. o 2. SECUREDBAAS
able to dynamically adapt to system conditionsf-Sel
optimizing one copy serializability (SO-1SR) is theSecureDBaaS (Secure database as a service)
concurrency control protocol that dynamicallyarchitecture proposed by Luca Ferretti et al sugspor
optimizes all stages of transaction execution omultiple clients and clients which are geograptycal
replicated data in the cloud database [2]. Currenlistributed to execute the independent and conaurre
DBMSs supported by cloud providers allows relaxed operation on encrypted data in the remote database
consistency guarantees which in turn increase ttg]. SecureDBaaS also guarantees data confidentiali
design complexity of applications [3]. and cloud level -consistency. This architecture

44

International Journal of Research in Advent Technology, Vol.2, No.10, October 2014
E-1SSN: 2321-9637

eliminates the intermediate server between thedclo§2) OPE: order preserving encryption permits the
database and client in order to provide availgbditd execution of inequality and range queries on
scalability [7]. encrypted data.

SecureDBaaS is the architecture that supports tfi8) Det: it permits the execution of equality and
concurrent execution of operations in the encrypteaggregation operators on encrypted data.

cloud database. The existing proxy based architectu

constraints the multiple and distributed clients t¢4) Random: it assures highest confidentiality leve
access data concurrently from the same database. But it restricts all SQL operators.

data consistency during the concurrent accesstaf da

and metadata can be assured by using some isolation

mechanisms or the concurrency control protocols i&2. |mplementation

the cloud database. SecureDBaaS allows thgsc repBaas$ client consists of five components:
execution of concurrent SQL operations (INSERT,

DELETE, SELECT, UPDATE) from multiple and operation parser software: Is responsible for the

distributed clients. In order to provide dataconyersion of receiving plain text SQL command into
confidentiality the tenant data and metadata shbeld jhtermediate form which is processed later by other

in an encrypted format. For this reason, clientg,oqules.
convert plaintext SQL statements into SQL statesent

that support transactions and isolation meCha”is%cryption engine: Is responsible for all kinds of

allowed in cloud databases [8]. The solutions f& t encryption and decryption operations specifiedhia t
consistency issues lies in the five contexts: @%d metadata of SecureDBaas.

manipulation (2) modification of structures (3)

altering table (4) .modification of secure type (Sletadata manager: it manages metadata local copies
unrestricted operations. and assures its consistency.

Query writer: it translates the query in intermeelia
form from the operation parser into SQL statements
The architecture design of SecureDBaaS consists thfat can be executed by the cloud database over
one or more client machines with SecureDBaa&ncrypted data.

installed and cloud database. This client is resiixda

for the connection of a user to the cloud DBaaS tDatabase connector: it acts as an interface between
perform SQL operations. The SecureDBaaS managelgent and remote DBMS.

plaintext data, metadata, encrypted data and etaxtyp

metadata. The plaintext data includes the data user

wants to save in cloud DBaa$S [9]. In order to avoi. CONCURRENCY CONTROL

the confidentiality issues, multiple cryptographic PROTOCOLS

approaches are used to convert plaintext data 8 what follows, we briefly present the most

encrypted form for storing in cloud database. Thgrominent concurrency control protocols that can be
metadata includes information needed to encrypt @fsed in cloud database.

decrypt data. Moreover, metadata is also storezhin

2.1. Architecture design

encrypted format [10]. 3.1. Self-optimizing One Copy Serializability (SO-
1SR)

Encryption Schemes: 1SR is the strongest and well known correctness

The encryption schemes supported by SecureDBagfiterion for applications that are newly deployied

[11] are: the cloud. It assures the serializable execution of

concurrent transactions and a one copy view of the
(1) Plain: it supports the storage of unencryptathd data. The most commonly used approaches to
in the cloud and allows all types of SQL operations implement 1SR is to use lock based protocols such
as strict two-phase locking (S2PL) for providing
serializable transaction execution and two-phase
commit (2PC) for synchronous updating all replicas.

45

International Journal of Research in Advent Technology, Vol.2, No.10, October 2014
E-1SSN: 2321-9637

3.2. Snapshot | solation
3.1.1.Transaction model: The transactional guarantees of Sl are weaker than
In a system providing 1SR, each transaction whichSR, such that the database system can achieve
writes to a data object must update all copieshef t increased concurrency by relaxing isolation
data object. In case of update transactions thequirements on transaction. In Sl, the transaction
replicated data increases the response time argd thaitempting read is never blocked. The tradeoff
decreases the overall scalability of the system. lpetween transaction isolation and performanceads th
order to exploit the merits of the cloud, it ises$al higher degrees of transaction isolation assure rfewe
to provide scalability, availability, low cost andanomalies. Anomalies avoided by 1SR are also
strongly consistent data management. Undevoided in Sl. Under Sl, write skew anomaly is
distributed systems, it is not possible to providpossible if two transactions concurrently update on
consistency and availability. The stronger conaisfe or more common data item. For example, consider
level decreases the availability and scalability. two transactions Jand T,.. Transaction }, reads data

items p and q and then updates concurrently with
In cloud environments, the cost of guaranteeing @ther transaction ;Tthat reads data item p and q and
certain consistency level on top of replicated data then updates g. Here transactiop @nd T, do not
be considered. Strong consistency is costly; on theve a write-write conflict because none of the
other hand, weak consistency is cheaper, but naaly letransaction updates a common data item.
to high operational costs of compensating the &ffec
of anomalies and access to stale data. The fiBifferent variations of Sl exist for replicated s
generation cloud DBMS’s provide on the wealike cloud which provide different consistency
consistency in order to provide maximum scalabilitguarantees. In a lazily synchronized replicated
and availability. It is sufficient for satisfying database system; if two transactionsamd T, do not
requirements related to consistency of simple cloudave a write—write conflict under SI, then their
applications. However, more sophisticated like welipdates may be committed in the ordefdllowed by
shops, online stores and credit card services megjui T, at a site Sbut in reverse order at another sitars
strong consistency levels. The advantages of clowghich each site individually guarantees Sl. In this
such as availability and scalability are not yetase, consider a transactiop that reads x and y at
exploited by existing commercial and open sourcsite S and view database state from the commit of T
DBMS'’s which provide strong consistency [12]. will not view this same database state if it werdoé

executed on the database replica at sit8us this
SO-1SR (self-optimizing 1SR) is a novel protocal fokind of replica in consistency will not occur in a
replicated data in a cloud that dynamically optiniz centralized database system that guarantees Sl.
all phases of transaction executions. System mafdel
SO-1SR assumes that applications are built onagme tSI was introduced by Berenson et al [13]. Sl is

of a cloud data environment. defined as; it does not allow dirty reads, dirtyites,
non-repeatable reads, phantoms or lost updatese Wri
3.1.2 Implementation: skew anomalies are possible in Sl. By the definitio

The SO-1SR middleware should be present at eaohSl, when the transaction starts the system assg
replica node. The transactions that are submitied Iransaction T start timestamp called start (T). The
the client to the application servers are forwartted database state seen by T is determined by start (T)
the SO-1SR middleware for optimal execution. Th&he system can choose any time less than or egual t
SO-1SR is based on a fully replicated system aaitd flthe actual start time of T to start (T). The update
transaction model. Protocols like 2PC or Paxos ateansactions made by' That commit after start (T)
needed to provide strong consistency guarantees. Thill not be visible to T. Only update transactidrat
main goal of SO-1SR is to decrease latency by usimpmmits before start (T) will be visible to T. Each
dynamic optimization technique at different phagkes transaction T is able to see its own updates @@ al
transaction life cycle, not to replace protocokeli requirement in Sl. Thus, if T updates a databasa it
2PC or Paxos. . and reads that item, then T will see the updatirene
though the update occurred after the start (T).

46

International Journal of Research in Advent Technology, Vol.2, No.10, October 2014
E-1SSN: 2321-9637

3.2.1.Transaction model: idea is that, all data does not need the same tHvel
Commit timestamp, commit (T) is assigned to a&onsistency. There is a term called consistency
transaction when a transaction is to commit. Theeti rationing i.e. the data is divided into three catézs
commit (T) is more recent than any other start oA, B, C and each type of data is treated diffesentl
commit timestamp assigned to any transaction. If ndepending on the consistency level provided.
other committed transaction, Twith lifespan [start
(Tw), commit (T,)] that overlaps with a T's lifespan of The category A contains data in which consistency
[start (T), commit (T)] write data that T has alsoviolations may result in large penalty costs. The
written then only T commits. Otherwise, to preventategory B includes data where the consistency
lost updates T is getting aborted. This technigfie @equirements change over time. Category C comprises
preventing lost updates is called the first-comenitt data in which inconsistency is acceptable. Session
wins (FCW) rule. consistency considers data under category C. C
category is always a preferred category for placing
Transaction inversions are possible in Sl, i.e. fodata in the cloud database [14]. By considering a
every pair of transactions;Tand T, if T, executes transaction cost and response time the session
after T, then T, will view T;'s updates. This is consistency is very cheap; because only few message
because the actual start time gfcan be larger than are needed as compared to strong consistency
that of a start (J). In particular, if T, starts after T guarantees. The performance level can be increased
has finished, then ;Twill see a database state thatby providing extensive caching mechanisms which in
does not contain the effects of. Tn order to prevent turn lowers the cost.
these kinds of transaction inversions, strong Sl is
introduced. 3.3.1.Transaction model:
In the definition of strong SI (SSI), if for evepair of By sessions, the client connects to the system. The
committed transactions p;Tand T, in transaction system assures read your own writes monotonicity as
history TH such that Js commit precedes the first the session ends. A new session cannot view the
operation of T, start () > commit (T,) and it is SI writes of the last executed session, immediatehe T
then we can say that the transaction executiooryist updates in sessions of different clients are notgs

TH is strong Sl. visible to each other. As the time passes, theemyst
converges and acquires consistency called eventual
3.2.2.Implementation: consistency. The conflicts for concurrent updates i

The decentralized model of S| based transactionke C category data depends upon the type of update
consists of some mechanisms such as: (a) Keepingna case of commutative and non-commutative
consistent, committed snapshot for reading (b) apdates, the former is solved by the last updates wi
global sequencer is used for arranging the traimsect and the latter is solved by performing the updates

by allocating commit timestamps (c) detection offter the other. But the inconsistencies are ptessib
write-write anomalies in concurrent transactionsl anboth cases.

(d) atomically commit the updates and make them

durable. In the model, each transaction goes thraug 3.3.2.1mplementation:

sequence of phases during execution. The main phalee implementation is done on top of the Amazon’s
is the active phase in which all read/write on dian ~ simple storage service (S3). The key idea is, each
is performed in this phase. The remaining phases grage’s highest commit timestamp is recorded that is
part of the commit of the transaction. Validationcached by the server in the past. The server cackch
phase is required for detecting the conflicts amoni§a server receives an outdated copy of the pema f

transactions that are executed concurrently. S3 and can update the page from S3. The session
consistency can be guaranteed by forwarding all
3.3. Session Consistency requests from the same client to the same sendsrun

Session Consistency is considered to be the minimuan session. The session ID is used for the routing
consistency level in a distributed environment thamechanism and the request is redirected accordingly
does not result in complexities for application

developers. Under Session Consistency, th&3. Cost-Based Adaptive Concurrency Control (C°)
application will not see its own updates and maly ge€ost plays an important role in the cloud environime
inconsistent data from successive accesses. The kdgng with the performance [15]. The strong

47

International Journal of Research in Advent Technology, Vol.2, No.10, October 2014
E-1SSN: 2321-9637

consistency leads to high cost, whereas wedR) Transaction Manager: Manages every transaction
consistency leads to high operational costs [¥6[I and responsible for the implementation &fpotocol.
approach, a consistency rationing model is usedhwhi(2) Site Manager: provision of an abstract layar fo
categorized the data into three: the first categompe management of local data access.
contains data which require ISR, the second cayegof3) Timestamp Manager: provides timestamps for
data require SC and the third category data handlé@dnsactions based on the arrival order and the
with adaptive consistency. At the data level, sjieci management of timestamps.
policy will be defined based on that policy(4) Lock Manager: Is responsible for management of
consistency level is selected between 1SR and SClatks.
the time of running. Moreover,*ds implemented on (5) Replica Manager: provides replica management.
the top of 1SR, SC and SSI concurrency protocols {§) Freshness Manager: manages the freshness data.
utilizing the resources provided by the cloud
providers. Under logical architecture of*Ceach replica includes

a Transaction Manager and Site Manager. Moreover,
The update anywhere and full replication procedureach replica also includes a local datastore wiiere
are the basis for the*@ystem model. The updating of Site Manager utilizes the datastore for managirmg) re
all replicas will be carried out in ISR and SSldata and Transaction Manager stores data regarding
transactions using 2PC, while SC transactions onits functionality.
commits at the remote local replicas. Thentdel
does not introduce any hindrance for the replicatioAvoidance of Anomalies: The transactions with read
strategy. Each and every replica in the system #&nd write sets are required for avoiding anomalies
known to all other replicas. The’ @rocedure uses an under consistency mixes. The implementation df C
adaptive layer, which allows the dynamic switchingonsists of different types of CCPs, when the diffi¢
between the different CCPs at runtime. Thus theoncurrent transactions, access the same data item
reduction of operational costs and transactiowith different consistency levels for the reasonshs

response time is possible [17]. as: First, the design of the application suppadnts t
access of the same data item by transactions with
3.4.1.Transaction model: different consistency levels. Second, consistency

An object-id is used for identifying an object unéy requirements will be different for different

for performing operations under transactions. Onlgpplications that use the same data [18]. Thirdeta

read operations are included in the read-onlgn the cost model different replicas execute

transaction, where update transactions should gontaransactions adaptively that accesses the same data

minimum one update operation. In the transactioabject [19]. The possible inconsistencies are:

model of G, provides a unique timestamp for

transactions at the start and commit time based ¢h) Inconsistencies arise because of the isoldtioel

their arrival order. The highest start timestamp ibetween transactions that run on same CCP.

assigned to the transaction which started mor@) Inconsistencies arise because of the isold¢vel

recently and the highest timestamp for commit & thbetween transactions that run on different CCP.

most recently committed transaction. (3) Data staleness is also a reason for the
inconsistency.

3.4.2.Implementation:

All the middleware components are implemented ad/e analyze these concurrency control protocols in

web services and allow deployment in possibl@able 1.

configurations. The components of @niddleware

are;

48

International Journal of Research in Advent Technology, Vol.2, No.10, October 2014
E-1SSN: 2321-9637

Table 1: Comparison of different concurrency coinprotocols

Properties SO-1SR Sl SC €

It is the form of
eventual consistency

Definition Integration of 1SR

with the merits of

Sl is a concurrency
control protocol. It

It is implemented or
.the top of ISR, SC

cloud such as avoids many| Data is accessedSSI. It is based on
availability, inconsistencies, butunder sessions. Inthe full replication
scalability, and allows write skew| sessions systemand update anywhere
strong consistency df anomaly. assures read yourapproaches.
data. writes consistency.

Consistency level Strong consistency Weak congigten | Read your writes Adaptive consistency

consistency

Scalability Higher scalability Higher scalability igher scalability Adaptive scalability
Availability Higher availability Higher availabily Higher availability Adaptive availability
Cost Optimized cost High penalty costs Low cost Lamst

4. CONCLUSION

In this paper, the different concurrency controlshe

Proceedings of the 32nd international conference
on Very large data bases, 2006, pp. 715-726.
[5] T. Kraska, M. Hentschel, G. Alonso, and D.

Kossmann, “Consistency Rationing in the Cloud:

encrypted cloud database such as SO-ISR, SI, SC and Pay only when it matters,” Proc. VLDB Endow.,

Clis discussed. These protocols provide differera dat
consistency levels at different costs. The conamye
and performance varies according to the concurrency
in the cloud environment.
architecture which supports the distributed, corentr

protocols used

[6] 1.

The
2012, p

2012 IEEE 5th

and H. Schuldt,
in

p. 526-533.

a data-as-a-service
environment,” in Cloud Computing (CLOUD),
International Conference on,

vol. 2, no. 1, pp. 253-264, 2009.
Fetai
consistency

“Cost-based data
cloud

and independent access to the encrypted clolid Y.Lu and G. Tsudik, “Enhancing data privacy in
database is SecureDBaaS. SecureDBaaS uses the the cloud,” in Trust Management V, Springer,

isolation mechanisms for providing concurrent asceiS]

to its geographically distributed clients.

Acknowledgments

| am thankful to my guide Dr. M. Newlin Rajkumar & [9] H. Hacigumus, B.
Co-guide Dr. V. Venkatesakumar for their guidance

and encouragement for the paper work.

REFERENCES

[1] L. Ferretti, M. Colajanni, and M. Marchetti,
Concurrent,

“Distributed,

and

Independent

2011, p

p. 117-132.

L. Ferretti, M. Colajanni, and M. Marchetti,

“Supporting security and consistency for cloud
database,” in Cyberspace Safety and Security,
Springer, 2012, pp. 179-193.

Engineering,

lyer,

2002.

and S. Mehrotra,
“Providing database as a service,” in Data
Proceedings.

18th

International Conference on, 2002, pp. 29-38.
[10]K. P. Puttaswamy, C. Kruegel, and B. Y. Zhao,

“Silverline:
storage-

intensive cloud

toward data confidentiality
applications,”
Proceedings of the 2nd ACM Symposium on

in
in

Access to Encrypted Cloud Databases,” IEEE Cloud Computing, 2011, p. 10.
Trans. Parallel Distrib. Syst., vol. 25, no. 2, pp[11]L. Ferretti, F. Pierazzi, M. Colajanni, and M.

437-446, Feb. 2014.

(2]

|. Fetai and H. Schuldt, “SO-1SR: towards a self-
optimizing one-copy serializability protocol for
data management in the cloud,” in Proceedings of
the fifth international workshop on Cloud data

management, 2013, pp. 11-18.

[3]

C. Curino, E. P. Jones, R. A. Popa, N. Malviya,
E. Wu, S. Madden, H. Balakrishnan, and N.
Zeldovich, “Relational cloud: A database-as-a-

service for the cloud,” 2011.

[4]

replication with

K. Daudjee and K. Salem, “Lazy database

shapshot isolat

Marchetti, “Security and confidentiality solutions

for

public

cloud database
SECURWARE 2013, The Seventh International
Conference on Emerging Security Information,
Systems and Technologies, 2013, pp. 36—42.

services,” in

[12]L. Ferretti, M. Colajanni, M. Marchetti, and A. E.

Scaruffi, “Transparent Access on Encrypted Data
Distributed over Multiple Cloud Infrastructures,”
in CLOUD COMPUTING 2013, The Fourth

International Conference on Cloud Computing,

ion,” in

GRIDs, and Virtualization, 2013, pp. 201-207.

49

International Journal of Research in Advent Technology, Vol.2, No.10, October 2014

E-1SSN: 2321-9637

[13]J. G. U. Berkeley and others, “A Critique of
ANSI SQL Isolation Levels,” Online Verfiigbar
Http131107, vol. 65.

[14]A. J. Feldman, W. P. Zeller, M. J. Freedman, and
E. W. Felten, “SPORC: Group Collaboration
using Untrusted Cloud Resources.,” in OSDI,
2010, vol. 10, pp. 337-350.

[15]M. Armbrust, A. Fox, R. Griffith, A. D. Joseph,

R. Katz, A. Konwinski, G. Lee, D. Patterson, A.
Rabkin, I. Stoica, and others, “A view of cloud
computing,” Commun. ACM, vol. 53, no. 4, pp.
50-58, 2010.

[16]W. Jansen, T. Grance, and others, “Guidelines on
security and privacy in public cloud computing,”
NIST Spec. Publ., vol. 800, p. 144, 2011.

[17]C. Almond, “A practical guide to cloud
computing security,” White Pap. Accent.
Microsoft, 2009.

[18]S. Hildenbrand, D. Kossmann, T. Sanamrad, C.
Binnig, F. Faerber, J. Woehler, D. Kossmann,
and D. Kossmann, Query Processing on
Encrypted Data in the Cloud by. ETH,
Department of Computer Science, 2011.

[19]Y. Sun, J. Zhang, Y. Xiong, and G. Zhu, “Data
Security and Privacy in Cloud Computing,” Int. J.
Distrib. Sens. Netw., vol. 2014, pp. 1-9, 2014.

50

